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Adaptation of autocatalytic fluctuations to diffusive noise
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Evolution of a system of diffusing and proliferating mortal reactants is analyzed in the presence of randomly
moving catalysts. While the continuum description of the problem predicts reactant extinction as the average
growth rate becomes negative, growth rate fluctuations induced by the discrete nature of the agents are shown
to allow for an active phase, where reactants proliferate as their spatial configuration adapts to the fluctuations
of the catalyst density. The model is explored by employing field theoretical techniques, numerical simulations,
and strong coupling analysis. Ford<2, the system is shown to exhibits an active phase at any growth rate,
while for d.2 a kinetic phase transition is predicted. The applicability of this model as a prototype for a host
of phenomena that exhibit self-organization is discussed.
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I. INTRODUCTION

There is a growing interest in the dynamics of cataly
systems with diffusing reactants@1#. These models have bee
considered in the theory of population biology@2#, chemical
kinetics @3#, and physics of contact process@4#, as well as
magnetic systems@5#. In the simplest case, where agents u
dergo only birth ~autocatalytic reproduction! and death
~spontaneous annihilation!, the total growth rate, i.e., the dif
ference between the typical rates for these two processe
the critical parameter for the system. While a negat
growth rate implies exponential decrease in the numbe
particles toward extinction of the colony, a positive ra
gives exponential growth. Usually, the number of reacta
saturates to some constant value that reflects the finite h
ing capacity of the environment. The most simplified ma
ematical description of this process is given by the c
tinuum Fisher equation@6#:

]b~x,t !

]t
5D¹2b~x,t !1sb~x,t !2lb2~x,t !, ~1!

whereb(x,t) stands for the density of reactants,s is the total
growth rate, and2lb2 is introduced phenomenologically a
the minimal nonlinear term that leads to saturation at posi
growth rate. Since the densityb is positive semidefinite, at a
negative growth rate (s,0) there is only one steady stat
the absorbing state, whereb(x,t)50 everywhere. At posi-
tive s, this state becomes unstable, and the system flows
the uniform stateb̄5s/l. In this simplified framework the
diffusion is irrelevant to the steady state, and only gove
the dynamical approach to it, an effect that has been con
ered in @6#. It turns out that the typical invasion of the un
stable phase by the stable one is in the form of Fisher fro
~of width w;AD/s) that propagate with velocityv
>2ADs. At the stable state, any small fluctuation wi
wavelengthk decays as exp@2(s1Dk2)t#. The phase transi
tion from the inactive to the active state takes place as
50.

Equation~1! describes the continuum limit of many un
derlying discrete processes. A typical example is a sys
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with particles diffusing~random walk!, annihilating (B1B
→B) and reproducing autocatalyticallyB→2B. The dis-
crete nature of individual reactants and their stochastic m
tion introduce a~multiplicative! noise, which may dominate
the evolution of the system and violate the predictions of E
~1!. For the above-mentioned and similar processes, it tu
out that, at low dimensionality (d<2), the extinction phase
is stable even at small, positive growth rates, and the tra
tion from the active to the inactive state falls into the equiv
lence class of directed percolation@7# ~Reggeon field theory!.
Moreover, it has been conjectured@8# that any transition with
a single absorbing state falls into the same equivalence c
unless some special symmetry or conservation laws are
troduced, as the even-offspring case considered by Gr
berger@5# and Cardy and Tauber@9#.

Recently, a new type of active-inactive phase transit
has been introduced, for the process~1! in the presence of
quencheddisorder in the relevant term,s(x). It has been
shown by Janssen@10#, that the renormalization group~RG!
flow of that process has only a runaway solution in the phy
cal domain~due to the ladder diagrams, which change t
effective mass of the free propagator!, hence the phase tran
sition is not of directed percolation type. Nelson and Shne
@11#, using the continuum approximation, showed that
local growth is related only tos(x) in the vicinity of the
domain, i.e.,localizationof Anderson type@12# takes place
and the extinction transition is given by the effective grow
rate of small, localized islands. Although the effect of intri
sic noise due to discreteness fluctuations has not been
sidered in@11#, it seems reasonable that the actual transit
takes place when the time scale for tunneling between
positive growth islands is smaller than the time scale
absorbing state decay of a single oasis.

If the disorder is uncorrelated, s(x,t) with
^s(x,t)s(x8t8)&5Dd(x2x8)d(t2t8), the linear part of Eq.
~1! also governs the statistics of a directed polymer on
heterogeneous substance, where the time in Eq.~1! is iden-
tified with the polymer’s preferred direction@13#. With the
Cole-Hopf transformation, this problem is mapped to t
noisy Burger’s process@14# ~KPZ surface growth@15#!. In
contrast with the localization in the case of static disorder,
©2001 The American Physical Society03-1
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uncorrelated environment inducessuperdiffusionof the reac-
tants, where the center of mass of the population wande
space asr}tz, with z.0.5. The effect of intrinsic stochas
ticity due to discretization is, again, limited, and the statis
cal properties of the eigenenergies of the directed poly
problem determines the extinction transition. This is also
case when the system under quenched disorder is subje
strong convection, as has been shown by@11#.

In this paper, we consider the case ofdiffusivedisorder.

B→
m

B,

B1A→
l

2B1A,

when bothB andA undergo diffusion with ratesDb andDa ,
respectively. The mortal agent,B, dies at ratem, and prolif-
erates in the presence of the~eternal! catalystA. The con-
tinuum description for this process is given by the mean-fi
~rate! equations for the densitiesa(x,t) andb(x,t):

]b~x,t !

]t
5Db¹2b~x,t !2mb1lab

~2!
]a~x,t !

]t
5Da¹2a~x,t !.

As t→`, a flows into its averageā, thus the effective mor-
tality rate for b is given bym5m2lā ~the mortality rate
turns out to be the mass of the effective field theory, he
denotedm). For positive mass theb population decays ex
ponentially, while negative mass implies exponential grow
The active-inactive phase transition takes place atm50.
One observes that Eq.~2! is obtained from Eq.~1! by drop-
ping the nonlinear term and replacings with lā2m; ac-
cordingly, at long times the process introduced in Eq.~2! is
the linearized form of Eq.~1! with the proliferation rates
fluctuating diffusively around its meanlā2m. Since for this
system the disorder is not static but is correlated, it someh
interpolates between the above-mentioned models and
may wonder whether it leads to localization of the reacta
or to superdiffusion@16#. It turns out that the reactants ma
adapt themselves to the environment and the colonies
localized on the diffusing islands. Moreover, these correla
fluctuations due to the stochastic motion of individual re
tants will change the character of the transition; the transi
point is pushed to negative values ofm and theb reactants
survive below the classical threshold. Some of our resu
along with a numerical study of the transition, are summ
rized in previous publication@17#.

II. STRONG COUPLING ANALYSIS

The basic intuition beneath the phenomenon we desc
is in the concept ofadaptive fluctuations. Let us take a look,
first, at the case of frozenA-s, where we have random
quenched, growth rate as in@11#. The linearized continuum
equation then takes the form
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]t
5D¹2b2m~x!b,

wherem(x)5m2lnA(x), andnA(x) is the random concen
tration of the catalystA. The system is in its active phase
the linearized evolution operator

L5D¹22m~x!

admits at least one positive eigenvalue, and its localiza
properties are almost determined by the corresponding ei
functions. Since the same operator governs the physic
quantum particles in random potential, one may use
known results@18# of this field, i.e., that in low dimension
ality or strong disorder all the wave functions are expon
tially localized and the diffusion becomes irrelevant on lar
length scales@19#. Accordingly, the system may be in it
active phase at localized islands even if the averagem is
positive.

In our case, however, the catalysts diffuse, and these c
nies survives only if the reactant cluster is able to trac
specific catalyst or to find some other wandering island. T
implies the significance of the system dimensionality: wh
two typical random walkers~such as the catalyst and th
reactant! encounter each other in finite time ford,2, they
will ~typically! never collide ford.2. One may expect, ac
cordingly, that below 2d quantization induced fluctuation
are much more dominant than above two dimensions.

Consider one frozen catalyst at the origin. The effect
growth rate in the vicinity of the origin is positive, i.e
m(r ,R)5min,0 in a region of typical catalyst sizeR
around it. In the desert, out of this island, the mass,mout , is
positive. The colony is then localized atr 50, with growth
rateuminu and an exponentially decreasing tail into the des
@11#. In the continuum approximation, the time-depende
profile of the tail is given by@20#:

b~r !;euminut2rAmout /D, ~3!

and the tail front, which is the size of the reactant colon
moves away from the origin with typical velocityv
;minAD/mout. If the catalyst is moving, the colony will die
only when theA molecule detaches from theB colony. This,
however, is almost impossible for a diffusively movingA,
since the colony’s front moves ballistically. As this argume
involves only one catalyst it is independent of system dim
sionality. Thus, at strong coupling some localized islands
active in any dimension, in contradiction with the mean-fie
prediction of extinction at positive average mass. T
mechanism is illustrated in Fig. 1, which manifests the ab
ity of the B colony to adapt to the location of the movin
catalyst. We stress that this adaptive skill is solely due to
dumb diffusion and multiplication of the reactants, and th
is an emergent self-organized feature.

There is, however, a possibility for a different scenar
the weak coupling limit, where the local properties of t
system do not support the formation of colonies in the in
tive phase. For aB molecule having a spatial overlap with a
A catalyst, the multiplication time is proportional tol. If this
3-2
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time is much longer than the relevant hopping rate, the ty
cal birth event is singular and no colony is formed. If, fu
thermore, the decay time for aB particle in the absence ofA
is much smaller than the typical time to find a new cataly
one may expect that the system is in its inactive phase,
less some global, collective effect turns this local analy
void.

Before looking for global effects, let us try to consider t
strong coupling limit more carefully. Consider a singleA
agent located at the pointr 0, and the island ofB reactants
that surrounds it. Keeping theA stationary and working on a
d-dimensional lattice~with lattice constantl, the growth rate
is l/ l d and the hopping rate is 2Dd/ l 2), the following equa-
tion holds for the concentration ofB’s:

nB~r ,t !;e[(l/ l d)2(2dDB / l 2)2m] telog[(DB /l) l d22] ur 2r 0u/ l , ~4!

where we assumeDBl d22!l ~thus the very steep slope su
presses the effect of diffusion returning inwards!. Conse-
quently,

] log@nB~r 0 ,t !#

]t
;S l l 22d22dDB

l 2
2m D . ~5!

Now consider a hopping event of theA, by a single lattice
spacing. MeasuringnB@r 0(t),t#, at the newA site, it reduces
by a factor of

e2 log[(DB /l) l d22] . ~6!

The rate at which the hopping events occur is 2dDA / l 2;
accordingly, the rate equation~5! is modified to

FIG. 1. The profile of aB island as a function of time as i
follows the random motion of anA agent~all units are arbitrary!.
The cross section of the island is taken through the current loca
of theA agent. The inset shows the time evolution of the logarit
of the height of theB concentration at the point at whichA is
currently located~solid line!. The B colony is seen to grow, al-
though the average growth rate over the entire space is negativenA

is extremely low, since there is only one in the whole simulat
space, thuslnA2m'2m). The dashed line shows the exponent
growth according to Eq.~8!.
02110
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] log@nB~r 0~ t !,t !#

]t
;

l l 22d22dDB

l 2

2m2
2dDA

l 2
logS l d22

DB

l D , ~7!

where we have assumed that there is enough time betw
hopping events that the island shape stabilizes to the l
time behavior~4!, namely,DAl d22!l. Equation~7! has the
solution

nB@r 0~ t !,t#;e$(l l 22d22dDB / l 2)2m2(2dDA / l 2)log[ l d22(Db /l)] %t.
~8!

This shows that in the strong coupling regime the expon
is positive and the number of reactants grows exponentia
independent of the dimension and of the catalyst dens
The inset of Fig.~1! shows the fit of expression~8! to the
numerical results on a lattice.

III. WEAK COUPLING

In order to consider global effects of spatial fluctuation
let us write the master equation for the probabilityPnm to
find m reactants andn catalysts at a single point~with no
diffusion!

dPnm

dt
52m@mPnm2~m11!Pn,m11#

2l@mnPnm2n~m21!Pn,m21#. ~9!

Following @21# we define a set of creation-annihilatio
operators,

a1un,m&5un11,m& b1un,m&5un,m11&,

aun,m&5nun21,m& bun,m&5mun,m21&,

and a wave function

C5(
n,m

Pn,mun,m&.

The master equation then takes the Hamiltonian form

]C

]t
52HC,

with

H5(
i

FDa

l 2 (
^e2 i &

ai
1~ai2ae!1

Db

l 2 (
^e2 i &

bi
1~bi2be!

1m@bi
1bi2bi #1

l

l d
@ai

1aibi
1bi2ai

1aibi
1bi

1bi #G ,

~10!

where i runs over all lattice points and the sum,^ i 2e&, is
over nearest neighbors.

n

l
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Shifting the creation operators to their vacuum expec
tion valuea1→ā11 andb1→b̄11, the value of the cata
lyst density to its average, (1/l 2)a→a1na , and finally
(1/l 2)b→b, the evolution operator takes the following for
in the continuum limit:

H5:E ddx@2Dbb̄¹2b2Daā¹2a1mb̄b

2lb̄b~ ā11!~ b̄11!~a1na!#:, ~11!

where :O : indicates the normal ordered operator. The act
is simply

FIG. 2. Elements of perturbative expansion: the vertices co
sponding to the action~12!. The vertices displayed in the first row
conserve the number ofb excitations, while in the second row o
vertices oneb particle is generated. In any case, there is no ann
lation of b excitations.

FIG. 3. The most UV-divergent diagrams contributing to t
renormalization group equations.
02110
-

n

S5E dtF E ddxS ā
]

]t
a1b̄

]

]t
bD1HG . ~12!

Note that the coefficient ofb̄b, which plays the role of mass
is given bym[m2lna .

Now this system may be analyzed using the standard
technique. First we note that only causal processes are
lowed, hence only diagrams that can be arranged such
all contractions point forward in time contribute. Noncaus
contributions ~which correspond, e.g., to the tadpole di
grams! vanish due to the form of Green’s function@9#.
Second, any correction to the mean-field equations~2!, ob-
tained from the saddle point equations@(]S/]ā) ā50,b̄50

50,(]S/]b̄) ā50,b̄5050#, correspond to diagrams with onl
one external creation (ā or b̄) leg. Inspecting the vertices in
Fig. 2, one sees that, going forward in time, the number ob
excitations may either remain the same~as in the first row of
vertices in Fig. 2!, or be increased~as in the second row o
vertices!, but will never increase from zero. New vertice
that are generated by the renormalization procedure will
change this feature. Hence only the vertices of the first r
take part in the renormalization of the mean-field equatio
One can easily convince oneself that the renormalization
the first row vertices is the same. Next we impose the cha
of scale:

x→sx,

t→szt,

b→s2d2h8b, ~13!

a→s2d2ha,

L→L/s,

wheres is the renormalization group scale factor. The ren
malization flows of the parameters of the action~12! are
taken to be their naive dimensionality plus the most U
divergent corrections from the diagrams shown in Fig.
using the basic vertices as in Fig. 2. The flow equations
the mass and the coupling constant are given by

dl

d ln~s!
5el1

l2

2pD

Ld22

11
m

DL2

,

~14!
dm

d ln~s!
52m2

l2na

2pD

Ld22

11
m

DL2

,

wheree522d, D5(Da1Db)/2 andL(s) is the upper mo-
mentum cutoff. Note that, as indicated by naive dimensio
analysis, the Gaussian fixed point$l50,m50% is stable at
d.2, hence there is no perturbative corrections toh andz in
this regime. If the momentum cutoff is much larger than a
other quantity of the problem, one has

-

i-
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dl

d ln~s!
5lS e1

l

2pD D ,

dm

d ln~s!
52m2

l2n0

2pD
,

and the flow lines are shown in Figs. 4 and 5 ford<2 and
d.2, respectively. Below two dimensions, the Gauss
fixed point is always unstable and the system flows to
strong coupling limit, where adaptiveB colonies grow in-
definitely, as indicated by the negative values of the effec
mass. At higher dimensionality, on the other hand, there
finite region in the parameter space where the trivial fix
point is stable andl flows into zero, while higher values o
initial coupling constant flow to infinity. For a system o
finite sizeLd, the flows should be truncated ats5L/ l , and
the phase is determined by the end point of the flow line
this s. For finiteL, equations~14! take the form

dg

d ln~s!
5eg1

g2

11M
,

FIG. 4. RG flow lines at the continuum limit ford<2 ~in arbi-
trary units!. While at short timesm grows, the system flows into its
active phasem,0 on large time scales.

FIG. 5. Renormalization flows ford.2. In the shaded region
the system flows into the active phase, while in the unshaded
gion, the system flows to the inactive phase (m→`).
02110
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d ln~s!
52M2

ag2

11M
,

where the dimensionless quantities areg5lLd22/2pD, M
5m/DL2, anda52pna /Ld. The flow lines ford52 are
shown in Fig. 6 and exhibit a transition due to the fin
lattice spacing.

IV. DISCUSSION

Since the classical works of Malthus and Verhulst@2#, it
has been recognized that most of the processes in living
tems are autocatalytic and thus are characterized by expo
tial growth. In fact, the appearance of an autocatalytic m
ecule may be considered as the origin of life. In this pap
these autocatalytic system are shown to admit s
organization in the presence of a fluctuating environme
The exponential amplification of good fluctuations in the c
talysis parameters prevails, in the situations discussed ab
the globally hostile environment, and is robust against
random motion of both the reactants and the catalysts.
result may be interpreted as an indication that life~in the
above sense! is resilient and is able to adapt itself to th
changing environment. The applicability of this mod
ranges from biological evolution~where the environment is
the genome space! to the role of enzymes in chemical rea
tions and even in social or financial settings.

Although the model presented here seems to interpo
between the quenched disorder~localized! situation ~at Da
50) and the KPZ situation~where the appearance of theA
catalysts is random in space and time!, these are singula
limits which are not accessible via the perturbative analy
The transformationa→a1na makes sense only for nonzer
Da , where any initial distribution of catalysts gives on
diffusive density fluctuations at long times. The KPZ situ
tions cannot be realized in these settings, since the fluc
tions are diffusively correlated@16#.

More realistic models, however, should take into acco
the depletion of resources by the catalytic process and
finite carrying capacity of the substrate. Although the mo
discussed above is relevant at time scales which are sma

e-

FIG. 6. Renormalization flows ford52 at finite lattice spacing.
Unlike Fig. 4, here there is a region in parameter space~unshaded!
where the extinction phase is stable.
3-5
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comparison with the mean time for consumption or satu
tion, the stable fixed point of the system may be different
particular, on a uniform, inexhaustible, autocatalytic su
strate with finite carrying capacity the discreteness-indu
fluctuations have been shown@9# to decreasethe effective
growth rate, and to give a directed percolation type transit
at d,2. The competition between this effect and the eff
of adaptive fluctuations will be considered elsewhere.
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