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Adaptation of autocatalytic fluctuations to diffusive noise
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Evolution of a system of diffusing and proliferating mortal reactants is analyzed in the presence of randomly
moving catalysts. While the continuum description of the problem predicts reactant extinction as the average
growth rate becomes negative, growth rate fluctuations induced by the discrete nature of the agents are shown
to allow for an active phase, where reactants proliferate as their spatial configuration adapts to the fluctuations
of the catalyst density. The model is explored by employing field theoretical techniques, numerical simulations,
and strong coupling analysis. Fd2, the system is shown to exhibits an active phase at any growth rate,
while for d>2 a kinetic phase transition is predicted. The applicability of this model as a prototype for a host
of phenomena that exhibit self-organization is discussed.

DOI: 10.1103/PhysRevE.63.021103 PACS nuner05.40—a, 64.60.Ak, 64.60.Ht

[. INTRODUCTION with particles diffusing(random wall, annihilating 8+ B
—J) and reproducing autocatalyticall—2B. The dis-
crete nature of individual reactants and their stochastic mo-
tion introduce amultiplicative) noise, which may dominate
the evolution of the system and violate the predictions of Eq.
(1). For the above-mentioned and similar processes, it turns
out that, at low dimensionalityd=2), the extinction phase
(spontaneous annihilatiprthe total growth rate, i.e., the dif- iTQ’ stable even at small, po_sitiV(_e growth rates, and the trgnsi—
ti|§>n from the active to the inactive state falls into the equiva-

ference between the typical rates for these two processes, . . :
the critical parameter for the system. While a negativelenCe class of directed percolatipr| (Reggeon field theojy

growth rate implies exponential decrease in the number OMo_reover, It ha? been conject_urE&j that any tran_smon with
particles toward extinction of the colony, a positive rate & single absorbing state falls into the same equivalence class,

gives exponential growth. Usually, the number of reactantinless some special symmetry or conservation laws are in-

There is a growing interest in the dynamics of catalytic
systems with diffusing reactants]. These models have been
considered in the theory of population biolof}, chemical
kinetics[3], and physics of contact procep$|, as well as
magnetic systemi&]. In the simplest case, where agents un-
dergo only birth (autocatalytic reproductignand death

saturates to some constant value that reflects the finite hol foduced, as the even-offspring case considered by Grass-

ing capacity of the environment. The most simplified math- erl'ger[S]tland Cardytand Tfaub?@]. inacti h ¢ "
ematical description of this process is given by the con- ecently, a new type of active-inactive phase transition

; ; : ) has been introduced, for the procd4s in the presence of

tinuum Fisher equatiof]: quencheddisorder in the relevant termy(x). It has been

ab(x,t) shown by Janss€ri(Q], that the renormalization groujRG)

"~ =DV?2b(x,t) + ob(x,t) = Ab2(x,1), (1)  flow of that process has only a runaway solution in the physi-
cal domain(due to the ladder diagrams, which change the
effective mass of the free propagatdnence the phase tran-

5 _ sition isnot of directed percolation type. Nelson and Shnerb
growth rate, and-Ab® is introduced phenomenologically as 191} ysing the continuum approximation, showed that the
the minimal nonlinear term that leads to saturation at positivg, growth is related only ter(x) in the vicinity of the

growth rate. Since the densibyis p(_)sitive semidefinite, at a domain, i.e.localization of Anderson typg12] takes place
negative growth rate<0) there is only one steady state, 5 the extinction transition is given by the effective growth

the abso_rbmg state, whelgx,1)=0 everywhere. At POSI- * rate of small, localized islands. Although the effect of intrin-
tive o, this state becomes unstable, and the system flows int@c noise due to discreteness fluctuations has not been con-
the uniform stateo=o/\. In this simplified framework the sidered in[11], it seems reasonable that the actual transition
diffusion is irrelevant to the steady state, and only governsakes place when the time scale for tunneling between two
the dynamical approach to it, an effect that has been consigositive growth islands is smaller than the time scale for
ered in[6]. It turns out that the typical invasion of the un- absorbing state decay of a single oasis.
stable phase by the stable one is in the form of Fisher fronts |f the disorder is uncorrelated o(x,t) with
(of width w~D/o) that propagate with velocityv (a(x,t)o(x't"))=A8(x—x")5(t—t"), the linear part of Eq.
=2,Do. At the stable state, any small fluctuation with (1) also governs the statistics of a directed polymer on a
wavelengthk decays as exXp-(o+Dk?)t]. The phase transi- heterogeneous substance, where the time in(Bgs iden-
tion from the inactive to the active state takes placerat tified with the polymer’s preferred directiori3]. With the
=0. Cole-Hopf transformation, this problem is mapped to the
Equation(1) describes the continuum limit of many un- noisy Burger's procesgl4] (KPZ surface growtH15]). In
derlying discrete processes. A typical example is a systemontrast with the localization in the case of static disorder, an

ot

whereb(x,t) stands for the density of reactansis the total
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uncorrelated environment inducssperdiffusiorof the reac- 5
tants, where the center of mass of the population wanders in e DV“b—m(x)b,
space as «t¢, with £>0.5. The effect of intrinsic stochas-

ticity due to discretization is, again, limited, and the StatiSti'Wherem(x)=,u—)\nA(x) andn,(x) is the random concen-

cal properties of the eigenenergies of the directed polymegation of the catalysA. The system is in its active phase if
problem determines the extinction transition. This is also thgne |inearized evolution operator

case when the system under quenched disorder is subject to
strong convection, as has been showr by. L=DV2—m(x)
In this paper, we consider the casediffusivedisorder.
admits at least one positive eigenvalue, and its localization
Bi@, properties are almost determined by the corresponding eigen-
functions. Since the same operator governs the physics of
A quantum particles in random potential, one may use the
B+A—2B+A, known resultd 18] of this field, i.e., that in low dimension-
ality or strong disorder all the wave functions are exponen-
when bothB andA undergo diffusion with rateB, andD,, tially localized and the diffusion becomes irrelevant on large
respectively. The mortal ager, dies at rateu, and prolif-  |ength scale§19]. Accordingly, the system may be in its
erates in the presence of titeternal catalystA. The con-  active phase at localized islands even if the avenagis
tinuum description for this process is given by the mean-fielgygsitive.
(rate) equations for the densities(x,t) andb(x,t): In our case, however, the catalysts diffuse, and these colo-
nies survives only if the reactant cluster is able to trace a

db(x,t) _ 2 specific catalyst or to find some other wandering island. This
ot DyV7b(x,t) = ub+Aab implies the significance of the system dimensionality: while
(2)  two typical random walkergsuch as the catalyst and the
da(x,t) 5 reactant encounter each other in finite time fdr<2, they
ot~ Daviaxb. will (typically) never collide ford>2. One may expect, ac-

cordingly, that below & quantization induced fluctuations
As t—oo, aflows into its averaga, thus the effective mor- are muc_h more dominant than above two d.|menS|ons. _

] ' o g ) Consider one frozen catalyst at the origin. The effective
tality rate forb is given bym=u—\a (the mortality rate  growth rate in the vicinity of the origin is positive, i.e.,
turns out to be the mass of the effective field theory, henc%(r<R)=min<O in a region of typical catalyst siz&
denotedm). For positive mass thb population decays ex- 5round it. In the desert, out of this island, the mass,;, is
ponentially, while negative mass implies exponential growthyqitive. The colony is then localized Bt 0, with growth
The active-inactive phase transition takes placemat0.  rate|m, | and an exponentially decreasing tail into the desert
One observes that E(R) is obtained from Eq(1) by drop-  [11] In the continuum approximation, the time-dependent
ping the nonlinear term and replacing with Na—w; ac-  profile of the tail is given by 20]:
cordingly, at long times the process introduced in Bj.is
the linearized form of Eq(1) with the proliferation rater b(r )~ elMinlt=rVMouc/D (3)

fluctuating diffusively around its meara— w. Since for this

system the disorder is not static but is correlated, it someho@nd the tail front, which is the size of the reactant colony,
interpolates between the above-mentioned models and orfgoves away from the origin with typical velocity

may wonder whether it leads to localization of the reactants~ m;,vD/my. If the catalyst is moving, the colony will die

or to superdiffusior{16]. It turns out that the reactants may only when theA molecule detaches from thicolony. This,
adapt themselves to the environment and the colonies al@wever, is almost impossible for a diffusively movirg
localized on the diffusing islands. Moreover, these correlategince the colony’s front moves ballistically. As this argument
fluctuations due to the stochastic motion of individual reac-involves only one catalyst it is independent of system dimen-
tants will change the character of the transition; the transitiorsionality. Thus, at strong coupling some localized islands are
point is pushed to negative values mfand theb reactants active in any dimension, in contradiction with the mean-field
survive below the classical threshold. Some of our resultsprediction of extinction at positive average mass. This
along with a numerical study of the transition, are summasnechanism is illustrated in Fig. 1, which manifests the abil-
rized in previous publicatiohl7]. ity of the B colony to adapt to the location of the moving
catalyst. We stress that this adaptive skill is solely due to the
dumb diffusion and multiplication of the reactants, and thus
is an emergent self-organized feature.

The basic intuition beneath the phenomenon we describe There is, however, a possibility for a different scenario,
is in the concept o&daptive fluctuationd_et us take a look, the weak coupling limit, where the local properties of the
first, at the case of frozeA-s, where we have random, system do not support the formation of colonies in the inac-
guenched, growth rate as jil]. The linearized continuum tive phase. For 8 molecule having a spatial overlap with an
equation then takes the form A catalyst, the multiplication time is proportional o If this

Il. STRONG COUPLING ANALYSIS
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404 o / where we have assumed that there is enough time between
hopping events that the island shape stabilizes to the long
. time behavior(4), namely,D A19~2<\. Equation(7) has the

20 solution

..... i nB[ro(t)’t]Ne{(xlzfd—deB/IZ)—M—(deA/|2)|og[|d*2(Db/A)]}t_

...... A :

This shows that in the strong coupling regime the exponent
is positive and the number of reactants grows exponentially,
independent of the dimension and of the catalyst density.
The inset of Fig.(1) shows the fit of expressio(8) to the
pumerical results on a lattice.

Time 800 350 408 5“0
FIG. 1. The profile of aB island as a function of time as it

follows the random motion of aA agent(all units are arbitrary
The cross section of the island is taken through the current locatio
of the A agent. The inset shows the time evolution of the logarithm
of the height of theB concentration at the point at which is . WEAK COUPLING
currently located(solid line). The B colony is seen to grow, al-
though the average growth rate over the entire space is negajjve (

is extremely low, since there is only one in the whole simulationlet
space, thuan,— u~—pu). The dashed line shows the exponential

In order to consider global effects of spatial fluctuations,
us write the master equation for the probabilRy,, to
find m reactants anch catalysts at a single poir{tvith no

growth according to Eq(8). diffusion)
time is much longer than the relevant hopping rate, the typi- dan: — u[MPyn— (M+1)Ppy 1]
cal birth event is singular and no colony is formed. If, fur- dt

thermore, the decay time forEaparticle in the absence &f
is much smaller than the typical time to find a new catalyst,

one may expect that the system is in its inactive phase, un- Following [21] we define a set of creation-annihilation
less some global, collective effect turns this local analysigperators,

—AmnPBn—n(m=1)P, m_4]. €)

void.

Before looking for global effects, let us try to consider the a“ln,my=[n+1m) b*|n,m)=|n,m+1),
strong coupling limit more carefully. Consider a single
agent located at the poimp, and the island oB reactants aln,my=n[n—1m) bln,m)=m|n,m-1),

that surrounds it. Keeping th& stationary and working on a

d-dimensional latticéwith lattice constant, the growth rate

is \/19 and the hopping rate isl2d/I?), the following equa-

tion holds for the concentration &’s: V= Ppn.m/n,m).
n,m

and a wave function

dy _ 2y _ d—27 _
Ng(r 1) ~ el (2APe 1 multgloalDa ) lir=rolft, - (4) The master equation then takes the Hamiltonian form

where we assumBgl9~?<\ (thus the very steep slope sup- P
presses the effect of diffusion returning inward€onse- —=—HV,
quently, at

with

2—d__
dlog[ng(rg,t)] ~<M 2dDg 5

at |2 K

D Dy
H=2 |17 2, & (@~ad+ 5 2 b (b—bo)
Now consider a hopping event of the by a single lattice

spacing. Measuringg[rq(t),t], at the newA site, it reduces

A
by afaCtOI‘ Of +/L[b|+b|_b|]+ I—d[ara,brb,—afa,bfrbrbl] y
_ d-2
e~ logl(Dg M1 ™7] (6) (10)
The rate at which the hopping events occur &D2 /1% wherei runs over all lattice points and the sufi;—e), is
accordingly, the rate equatidp) is modified to over nearest neighbors.
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Note that the coefficient dib, which plays the role of mass,
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=

a- +E& b
a—a E

+
ot H

. (12

o
o

_ a _ a is given bym=u—\n,.

a N a b b v P Now this system may be analyzed using the standard RG
b < > L - b technique. First we note that only causal processes are al-

f 5 ""a\\ c b b Mg, lowed, hence only diagrams that can be arranged such that

ol

all contractions point forward in time contribute. Noncausal
FIG. 2. Elements of perturbative expansion: the vertices correpomnbu“on.sr(lwgICh tcortrheSpfond’ e%gé to t,he ftadpt).ol'g dia-

sponding to the actiofil2). The vertices displayed in the first row grams)dvanls ue .0 N horm 0 f.rei‘gn S “’.‘C i g

conserve the number df excitations, while in the second row of “>€0Nd, any correction to the mean-fie equitliﬁ)so )

vertices oneb particle is generated. In any case, there is no annihifained from the saddle point equatiof§dS/da),-op-o
lation of b excitations.

=0,(¢9S/o7§);:0;:o=0], correspond to diagrams with only

o ) _ one external creatiora(or b) leg. Inspecting the vertices in
Shifting the Creation operators to their vacuum expectarig. 2, one sees that, going forward in time, the numbéy of
tion valuea® —a+1 andb®—b+1, the value of the cata- excitations may either remain the safas in the first row of
lyst density to its average, (fJa—a-+n,, and finally vertices in Fig. 2 or be increasedas in the second row of
(11?)b—b, the evolution operator takes the following form vertices, but will never increase from zero. New vertices
in the continuum limit: that are generated by the renormalization procedure will not
change this feature. Hence only the vertices of the first row
_ _ _ take part in the renormalization of the mean-field equations.
H= 1J d[ —D,bV?b—D,aV2a+ ubb One can easily convince oneself that the renormalization of
the first row vertices is the same. Next we impose the change

—\bb(a+1)(b+1)(a+n,)]:, (11)  of scale:
. , X—SX,
where :0O : indicates the normal ordered operator. The action
is simply t— g7,
b—s 9= 7'p, (13
a \\ a
a—s 97 7a,
- A—Als,
b | b
! wheres is the renormalization group scale factor. The renor-
/ malization flows of the parameters of the actit®) are
/' taken to be their naive dimensionality plus the most UV-
B divergent corrections from the diagrams shown in Fig. 3,
b ’,/' using the basic vertices as in Fig. 2. The flow equations for
- the mass and the coupling constant are given by
d\ N A2 A2
dins) M2 T
RN 1+
a \\ii DA2
a (14
\ dm A%n, A92
b ) dinis) <M 24D m
““““““ ! 1+
; DA?
," b wheree=2—-d, D=(D,+Dy)/2 andA(s) is the upper mo-
b ,,_/ mentum cutoff. Note that, as indicated by naive dimensional
b

.- analysis, the Gaussian fixed poifit=0m=0} is stable at

d>2, hence there is no perturbative correctiongtandzin
FIG. 3. The most UV-divergent diagrams contributing to the this regime. If the momentum cutoff is much larger than any

renormalization group equations. other quantity of the problem, one has
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FIG. 4. RG flow lines at the continuum limit fa<2 (in arbi- FIG. 6. Renormalization flows fail=2 at finite lattice spacing.
trary unit9. While at short timesn grows, the system flows into its  Unlike Fig. 4, here there is a region in parameter sgacshadep
active phasen<0 on large time scales. where the extinction phase is stable.
d\ A dMm ay?
=) , = _om- L
din(s) 27D dlin(s) 1+M
) where the dimensionless quantities are \A%"2/27D, M
dm —om— Ang =m/DA?, anda=2mn,/AY. The flow lines ford=2 are
din(s) 27D’ shown in Fig. 6 and exhibit a transition due to the finite

lattice spacing.

and the flow lines are shown in Figs. 4 and 5 =2 and
d>2, respectively. Below two dimensions, the Gaussian IV. DISCUSSION

fixed point is always unstable and the system flows to the Since the classical works of Malthus and Verhg, it

strong coupling limit, where adaptive colonies grow in- has been recognized that most of the processes in living sys-
definitely, as indicated by the negative values of the effectiv gnizec P : g sy
mass. At higher dimensionality, on the other hand, there iS}ems are autocatalytic and thus are characterized by exponen-

finite region in the parameter space where the trivial fixe lal growth. In fact, 'the appearance.o'f an qutocatalytlc mol-
point is stable and flows into zero, while higher values of ecule may be con_5|dered as the origin of life. In th|s. paper,
initial coupling constant flow to infinity. For a system of these. aqtocz_atalyﬂc system - are shown_ to ad_m it self
finite sizeL9, the flows should be truncated s L/I, and organization in the presence of a fluctuatlng environment.
the phase is’ determined by the end point of the f|0’W lines he gxponentlal ampllflcgno_n of gopd fIl_Jctuat!ons in the ca-
this s. For finite A, equations(14) take the form alysis parameters preva}lls, in the situations dlscussgd above,
' ’ the globally hostile environment, and is robust against the
5 random motion of both the reactants and the catalysts. Our
dy et Y result may be interpreted as an indication that [ife the
din(s) IR TN VE above sengeis resilient and is able to adapt itself to the
changing environment. The applicability of this model
ranges from biological evolutiofwhere the environment is
the genome spagéo the role of enzymes in chemical reac-
tions and even in social or financial settings.
Although the model presented here seems to interpolate
between the quenched disordéscalized situation (at D,
=0) and the KPZ situatioffiwhere the appearance of tihe
catalysts is random in space and tjmtéhese are singular
limits which are not accessible via the perturbative analysis.
The transformatiom—a+n, makes sense only for nonzero
D,, where any initial distribution of catalysts gives only
diffusive density fluctuations at long times. The KPZ situa-
tions cannot be realized in these settings, since the fluctua-
0.25 0.5 0.75 1 1.25 1.5 1.75 2 tions are diffusively correlatefiL6].
v More realistic models, however, should take into account
FIG. 5. Renormalization flows fod>2. In the shaded region, the depletion of resources by the catalytic process and the
the system flows into the active phase, while in the unshaded rdinite carrying capacity of the substrate. Although the model
gion, the system flows to the inactive phase-{=). discussed above is relevant at time scales which are small in
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